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SUMMARY 

The steady incompressible laminar flow field over a 6 :  1 prolate sphercrid at lo" incidence and a Reynolds 
number of 1.6 x lo6 is investigated numerically by solving a reduced set of the Navier-Stokes equations. The 
present study moves one step beyond the boundary layer approximation by relaxing the requirement of an 
imposed pressure field to  permit the calculation of both attached and longitudinal vortical flow fields. The 
results shed light on the flow properties over slender bodies at intermediate incidence. The longitudinal 
vortex is found to  be weak relative to  vortex-dominated flows. Nevertheless, it has pronounced effects on the 
flow near the surface and on global features of the flow field. A displacement velocity which describes the 
effect of the vortical flow on the outer inviscid flow is defined. The line on the spheroid where the 
displacement velocity vanishes closely follows the projection of the vortex centreline on the surface of 
the spheroid. It is demonstrated numerically that the convergence of the skin friction lines is not a 
unique criterion for identifying a vortex flow. 
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1. INTRODUCTION 

1.1.  Fluid flow over slender bodies 

The present work studies the steady incompressible flow field over a 6: 1 prolate spheroid at 
intermediate incidence. The structure of the flow over a blunt slender body depends on several 
parameters such as the geometry, incidence, Reynolds and Mach numbers, yet the global 
qualitative characteristics of the flow appear to be similar over a wide range of parameters. 

At very low incidence the viscous effects are confined to a thin three-dimensional boundary 
layer attached to the body. At higher angles of attack (5"-10") the flow is characterized by three 
domains.' On the windward side, an attached three-dimensional boundary layer is formed. On 
the leeward side the boundary layer detaches from the body because of the adverse circum- 
ferential pressure gradient and rolls up into a pair of longitudinal symmetrical vortices. The 
effects of these detached vortices on the aerodynamic properties may be significant. At the rear 
part of the body a domain of separated flow exists with regions of reversed axial velocity. At 
higher incidence the intensity of the vortices increases and additional pairs of symmetrical 
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vortices are generated. A t  a very high incidence (usually above 45") the symmetry of the flow field 
breaks up. 

The identification of separated flow regions and separation lines is of fundamental importance. 
In two-dimensional flows the separation point can be easily located because the skin friction 
vanishes there. In three-dimensional flows the skin friction does not vanish along the entire 
separation line and may even become larger than in neighbouring regions. Moreover, the 
addition of the third dimension permits a vast variety of possible structures of the separated flow 
regions. 

Skin friction lines are very valuable in the theoretical analysis of three-dimensional flow 
separation. A relatively large database of patterns of skin friction lines over aerodynamic bodies 
has been obtained experimentally by oil streak techniques. Many studies have focused on the 
relationship between flow separation and the pattern of the skin friction lines using well known 
topological rules (see e.g. References 2-7). 

Tobak and Peake' observed that a necessary but not sufficient condition for separation of the 
flow is the convergence of many skin friction lines into a particular line-the 'separation line'. 
However, there is still debate on the topological characteristics of separation lines, in particular 
whether they necessarily emanate from a singular p0int.j Even less clear is the structure of three- 
dimensional separated flow fields. In two-dimensional flows the separation of the flow leads 
inevitably to regions of reverse flow in the main direction. In three-dimensional flows the reversal 
of a velocity component in any direction does not necessarily mean separation of the flow. 

To make the problem tractable, many existing experimental and computational studies rely on 
analysis of the two-dimensional flow near the body to study the three-dimensional flow. However, 
it is clear that three-dimensional separation is a global phenomenon which requires a compre- 
hensive examination of the complete flow field.7 A simple criterion for identifying three- 
dimensional separated regions merely from the skin friction lines cannot be found. 

1.2. Experimental data 

Experimental results for three-dimensional incompressible flows over slender bodies are scarce. 
Most of the available studies use the prolate spheroid as a test configuration. Han and Patel' 
visualized the three-dimensional flow field over a spheroid of axial ratio 4.3: 1 at several angles of 
attack and at a low Reynolds number (8 x lo4) by injecting dye in a water tunnel. The results are 
not of sufficient detail and only the gross features of the flow field are described, without 
quantitative distribution of the flow variables. A principal source of experimental results for 
incompressible flows over slender bodies was provided by Kreplin et aZ.," who performed a series 
of experiments to measure the skin friction distribution on a 6: 1 prolate spheroid at  several angles 
of attack and Reynolds numbers. In a few cases the pressure distribution was obtained as well. 
Velocity profiles were measured for a few locations in fully turbulent regions only. 

The existence of an experimental database for the incompressible flow over a prolate spheroid, 
combined with a known potential flow field solution, made this a popular test case for numerical 
studies of three-dimensional, incompressible and external flows. 

1.3. Numerical modelling 

Numerical solutions may produce fine details of the flow field provided that adequate 
mathematical and numerical models are used. The viscosity and no-slip conditions on the surface 
of the body play a major role in the separation of the flow from smooth slender bodies. Hence 
inviscid approximations utilizing the potential flow assumption or based on the Euler equations 
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are inadequate. The Navier-Stokes equations are preferred in these cases. However, three- 
dimensional numerical simulations using the Navier-Stokes equations are still expensive in both 
CPU and memory requirements. The high computational cost required for the solution of the 
Navier-Stokes equations led to a search for simpler and more economical models of the flow 
field. Many existing viscous and incompressible computations use the steady boundary layer 
approximation to solve the flow field over a prolate spheroid of axial ratio 4: 15,9,'o or 6: l .11*'2 
The boundary layer equations are fully parabolic and therefore can be solved efficiently by 
marching from the front stagnation point. In regions of attached flow, or in regions with relatively 
slight circumferential reversed flow, good results were obtained by most boundary layer com- 
putations. However, numerical instabilities were detected near the location of the separation lines 
and no solutions could be obtained in separated flow regions. Williamsi3 related these in- 
stabilities to the singular behaviour of the three-dimensional boundary layer equations near 
separation lines, which is similar to the singularity found in the two-dimensional boundary layer 
equations near a separation point. The appearance of numerical instabilities is usually interpreted 
as the onset of separation, but no reliable or physically accurate boundary layer solutions can be 
expected in these regions. 

The reduced Navier-Stokes (RNS) and thin layer (TL) approximations occupy the middle 
ground between the Navier-Stokes equations and the boundary layer equations. In the RNS 
approximation the diffusion terms along the co-ordinate lines that approximately coincide with 
the mainstream direction are neglected. In the TL approximation the circumferential diffusion is 
neglected as well and only the diffusion normal to the body is retained. By neglecting the diffusion 
terms along the mainstream direction (and in the circumferential direction), the equations are 
simplified and may be solved more effiiciently. Rubin and Reddy14 showed that the RNS 
equations contain all the important terms of the Navier-Stokes equations for high-Reynolds- 
number flows. Rosenfeld' proved for the incompressible case that the RNS system of equations 
is still elliptic but of reduced order. These approximations do not suffer from any mathematical or 
numerical singularities and yield solutions very similar to the solutions obtained from the 
complete Navier-Stokes equations. 

The TL equations are very common in the calculation of compressible flow fields by time (or 
time-like) marching. As the Mach number decreases, the convergence rate often deteriorates. 
However, Pan and Pulliam16 and Vatsa et al.' solved the compressible TL equations for the flow 
over a 6 :  1 spheroid at an incidence of 10" and a relatively low Mach number (Mach numbers of 
0.029 and 0.4 were used in References 16 and 17 respectively). Although both works solve 
essentially the same problem by similar numerical methods, the results differ in several aspects. 
Only the skin friction and pressure distribution on the spheroid as well as the particle traces in a 
cross-flow plane were present. 

In all these studies based on the TL equations the reduced ellipticity of the approximate 
differential equations is not utilized to save computational resources. The only saving in CPU 
time is obtained from the reduction in the number of algebraic operations resulting from a smaller 
number of viscous terms. This was noted by Rubin and Lin," who suggested a solution method 
that takes advantage of the special form of the two-dimensional incompressible RNS equations. 
The momentum and continuity equations are solved as a coupled set of equations by an iterative 
marching procedure. No special treatment of the continuity equation is required as in the 
fractional step or artificial compressibility methods. Israeli and Lin' improved the convergence 
properties of the original method by modifying the discrete streamwise momentum equation such 
that upon convergence the modification vanishes. The method was extended by Rosenfeld" and 
Rosenfeld et to the three-dimensional case using curvilinear orthogonal co-ordinate systems. 
This efficient solution method solves the RNS equations with an effort similar to that of solving 
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the boundary layer equations. However, the pressure is not imposed but interacts with the 
velocity field and thus the singularity of the boundary layer equations is removed. 

In the present work a detailed simulation of the steady, incompressible and laminar flow field 
over a prolate spheroid of axial ratio 6:l at an incidence of lo" and a Reynolds number of 
1.6 x lo6 (based on the length of the spheroid) is presented. The numerical method of Ro~enfeld'~ 
and Rosenfeld et ai.20*21 is used to solve the RNS approximation with primitive variables in an 
orthogonal co-ordinate system. The RNS approximation allows one to extend the boundary 
layer solution to vortical flow regions at a moderate computational cost. A relatively small 
number of mesh points are adequate to correctly resolve the flow field in the attached and 
longitudinal vortical flow regions owing to a careful selection of the location of the outer and 
downstream boundaries of the computational domain. The results allow the description of the 
flow field over substantial parts of the spheroid. Special emphasis is given to the investigation of 
the longitudinal vortical flow regions. 

2. METHOD 

2.1. Mathematical formulation 

The reduced Navier-Stokes equations are written in a general axisymmetric curvilinear 
orthogonal co-ordinate system using primitive variables. The three orthogonal co-ordinates p, 0 
and 5 run approximately in the normal, circumferential and mainstream directions respectively. 
The mesh points are redistributed by one-dimensional stretching functions into another ortho- 
gonal co-ordinate system: q, s and t respectively. 

The physical components of velocity along the co-ordinate lines are (V,, <, c). In the present 
formulation the velocity is given in a scaled form (u, v, w) defined by 

u = h q < ,  v=h,V, ,  W=htF ,  (1) 

where h,, h, and h, are the geometrical scale factors of the orthogonal co-ordinate system. 

2.1.1. The governing equations. The continuity equation is given by 

In an orthogonal co-ordinate system the mixed derivatives appearing in the laminar diffusion 
terms can be eliminated by using the continuity equation. The reduced Navier-Stokes 
momentum equations for the directions q, s and t respectively are given byZo 
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with the Jacobian J given by 

J = h, h,h,. (44 

2.1.2. The computational domain and the boundary conditions. The analytic orthogonal prolate 
co-ordinate system has been employed for its simplicity. The mesh points have been redistributed 
to allow clustering of grid points in the boundary layer region. A uniform distribution of points is 
maintained in the circumferential direction. The upstream boundary is placed downstream of the 
forward stagnation point in a region where the boundary layer approximation can still be 
justified. 

The flow separation at the rear part of the spheroid, which produces reversed flow in the 
mainstream direction with strong viscous-inviscid interaction, can be accurately computed only 
if the downstream boundary is moved far enough into the wake and the number of mesh points is 
increased appropriately. Moreover, calculation of the flow near the rear stagnation point 
increases the number of iterations required for convergence of the discrete equations. As a result 
the total requirement of computer resources becomes too high. 

A possible way to overcome this difficulty is to place the downstream boundary ahead of the 
rear stagnation point. Obviously, this simplification does not allow the solution of the global 
separation region and the upstream influence of it cannot be accounted for. However, physical 
intuition suggests that the upstream influence of this separation is small for high-Reynolds- 
number flows over slender bodies at intermediate incidences. Numerous solutions of similar flows 
using the singular boundary layer approximation have yielded good agreement with experi- 
mental data in the attached flow regions, although they totally excluded the effect of both vortical 
and global separation regions. This fact supports the hypothesis of the present work that the 
upstream influence of globally separated regions is limited under the above conditions. It was 
decided to adopt this approach to permit an affordable numerical solution of the problem. 

The RNS equations require three boundary conditions on all the boundaries, except at the 
downstream boundary where a single condition should be specified. At the upstream boundary 
the velocity is specified as 

u = U U P ,  u = uup, w = wup, (54  

where the subscript 'up' stands for the upstream conditions. The normal and circumferential 
components of velocity are approximated from the potential solution, except at the surface of the 
spheroid where the velocity vanishes. The mainstream component wup is approximated by a 
Karman-Pohlhausen profile. The value of the displacement thickness at  the upstream boundary 
is approximated from the solution of the integral boundary layer equations given by Stock.*' 

Three boundary conditions should be specified for the outer boundary. Assuming that this 
boundary is far enough from the body, the potential flow values are given to the streamwise and 
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circumferential velocity components and to the pressure: 

0 = vpot, w = W p o t ,  P = P,,,. 

The outer boundary may be placed closer to the body than in the case where uniform velocity is 
specified. This enhances the efficiency of the method and requires fewer mesh points in the normal 
direction, at the expense of excluding the computation of strong viscous-inviscid interaction 
regions such as in regions of global separation. It should be noted that if the outer boundary is 
moved far away from the body, the RNS equations will correctly simulate the flow in these 
regions as well. 

The normal velocity component u is not prescribed at the outer boundary. Therefore the 
displacement effect caused by the viscous boundary layer is not preimposed. This displacement 
effect can be used as a driving mechanism for a viscous-inviscid interaction algorithm. This 
possibility was not explored in this study. 

A Neumann-type boundary condition is given for the pressure at the downstream boundary: 

at POL 

On the body the no-slip and no-injection conditions are used: 

u= 0 = w =o. 
The computational domain included only half the flow field because the flow is symmetric at 
intermediate incidences. On the leeward and windward symmetry planes, symmetry conditions 
are specified. 

( 5 4  

2.2. Numerical method 

Details of the numerical procedure for the solution of the three-dimensional incompressible 
RNS equations in a generalized orthogonal co-ordinate system as well as its validation and 
assessment are given by Rosenfeld and Israeli*l and Rosenfeld et aLZ0 Therefore the solution 
method will be only briefly reviewed here. 

The set of RNS differential equations was discretized by finite differences over a special choice 
of staggered grid which can maintain second-order spatial accuracy by defining the location of 
the pressure in the same place as the mainstream component of the velocity.209z' First-order 
smoothing terms were added only to the cross-flow convection terms of the momentum equations 
to improve the stability properties of the scheme in regions of large cross-flow velocity. No 
smoothing terms were added to the continuity equation. The non-linear difference equations were 
linearized by a single Newton-Raphson iteration and solved iteratively using global iterations. 

A single global iteration is performed by marching from the upstream boundary to the 
downstream boundary. In each step of the marching process the finite difference form of the 
coupled continuity and momentum equations in a computational cross-flow plane is solved 
simultaneously without any splitting errors. The simultaneous solution ensures that the discrete 
forms of the continuity and the two linearized cross-flow momentum equations are satisfied 
exactly even when the iterative solution is  not converged. Global iterations are required to satisfy 
the discrete streamwise momentum equations, which include terms involving downstream values 
of the pressure (known only from the previous global iteration). A significant reduction in storage 
can be achieved because only a single three-dimensional field (the pressure) must be stored while 
the velocity is regenerated during the marching process. 
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2.3. Geometrical and numerical details 

In the present paper the details of the calculated flow over a prolate spheroid of axial ratio 6: 1 
and 10" incidence at a Reynolds number of 1.6 x lo6 (based on the major axis) are presented. The 
normalized axial direction along the major axis is Z = cos (, so that Z = - 1 and Z = 1 correspond 
to the nose and rear end of the spheroid respectively. The upstream and downstream boundaries 
of the computational domain are located at Z = - 0.95 and Z =0.76 respectively. The outer 
boundary is located at p = 022 whereas the spheroid itself is at p = 0.17. Since the outer boundary 
is close to the spheroid, the hyperboloid ( =constant can be approximated by the plane Z = cos {. 
Consequently, the results will be presented in a cross-flow plane Z = constant rather than for the 
5 =constant hyperboloids. 

The computational mesh consisted of 25 x 25 x 33 points in the normal, circumferential and 
axial directions respectively. Grid points were clustered near the surface of the spheroid by a 
hyperbolic stretching function to properly resolve the flow near the body. The physical distance 
between two adjacent points near the outer boundary is eight times bigger than that between two 
adjacent points near the body. 

The total number of mesh points is modest. Nevertheless, the resolution obtained is acceptable 
owing to the relative proximity of the outer boundary and the location of the downstream 
boundary on the rear end of the spheroid. Thin layer solutions use significantly more mesh points 
but for a much larger domain of computation.'6,17 Consequently, the resolution near the surface 
is comparable. However, this choice limits the present solution to regions with no globally 
separated flows. 

The solution converged to an RMS error of lo-* in less than 20 global iterations, which 
required about 2 h CPU time on an IBM 3081D computer and about 350000 words of storage. 

Rosenfeld et aI.Z0923 assessed the accuracy of the results and their dependence on the various 
parameters, including the mesh size and the location of the boundaries. It has been shown that the 
present mesh domain of computation can correctly resolve the flow field in both the attached and 
vortical flow regions over a slender spheroid. In the present paper we rely on these previous 
validation tests and proceed to study the flow field. 

3. SURFACE PROPERTIES 

It is widely accepted that understanding of the flow over three-dimensional configurations is 
possible only by studying the entire three-dimensional flow field. However, surface properties 
such as skin friction lines, the boundary layer integral thickness or the pressure distribution on 
the body are still of interest. In particular, it is useful to know the relation (if any) between the 
features of tbe flow field near the surface and the three-dimensional separation phenomena. In the 
following subsections the calculated results of the surface properties are depicted. 

3.1. Skin friction and skin friction lines 

defined by 
The normalized skin friction coefficient vector on the surface of the spheroid, Cf =(Cf,5, Cf, @), is 

where 7w is the shear stress vector on the surface, p is the density and V, is the undisturbed 
velocity upstream. Figure 1 gives the distribution of C, on the spheroid. In the present domain of 
computation the longitudinal component of skin friction, Cf, is always positive, indicating no 
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Figure 1. Distribution of the skin friction coefficient vector on the spheroid 

reversal of the longitudinal flow near the surface of the spheroid. The circumferential component 
Cf,o reverses its sign along an oblique line that emanates from the leeward symmetry plane near 
Z = - 0.65. This line will be called the zero-circumferential-skin-friction line (ZCFL). 

Figure 2 compares the skin friction plot with the experimental results of Kreplin et aL8 for the 
same case. In the laminar flow regions the agreement is usually good, bearing in mind the 
complexity of the flow field and the difficulties associated with measuring the skin friction in 
laminar regions.8 The agreement at the upstream boundary near the leeward side is not as good. 
This is attributed to inaccurate upstream boundary conditions used for the circumferential 
velocity component.'' The agreement improves at the downstream locations near the leeward 
symmetry boundary. The results are in disagreement at the downstream stations leeward of the 
ZCFL. It has been found experimentally that in this region the shear stress magnitude increases 
drastically because of the transition of the laminar flow into a turbulent flow. Vatsa et a/." 
obtained in their laminar flows calculations results similar to the present results. In the turbulent 
calculations they have found the solution to be sensitive to the assumed location of the transition 
to turbulence. Obviously, the present laminar simulation cannot reproduce the turbulent flow 
regions. 

The contours of the magnitude of the normalized skin friction in the Z-8 plane are shown in 
Figure 3. The skin friction magnitude is large near the upstream boundary and generally 
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Figure 2. Comparison of the skin friction coefficient vector on the spheroid with experimental results 

decreases in magnitude along the axial direction. However, at the leeward side near the 
downstream boundary the magnitude of the skin friction increases. The minimum in the 
magnitude of the skin friction is located on an oblique line on the surface (see Figure 3). It should 
be noted that the ZCFL and the minimal skin friction line do not coincide. 

The skin friction lines are tangent to the shear stress vector on the surface of the body and can 
be computed by integration of 

In steady flows the skin friction lines are the projection of the limiting streamlines on the surface 
of the body. Hence the pattern of the skin friction lines may be indicative of the flow field in the 
vicinity of the body. Figure 4 shows the computed skin friction line pattern on the spheroid from 
two views. Near the upstream boundary and on most of the windward side the skin friction lines 
run generally in the direction of the outer potential flow. On the leeward side and near the 
downstream boundary the flow field is reversed in the circumferential direction. In the present 
domain of solution neither singular points (where the skin friction vanishes) nor closed conver- 
gence lines can be found. However, a long and swept convergence line can be clearly observed 
with skin friction lines merging into it from both sides. The precise origin of the convergence line 
cannot be defined and no singular points can be detected on the upstream part of the line. As 
pointed out by Dallmann,' it is impossible to determine uniquely from the surface flow whether 
the convergence line is also a separation line. 
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Figure 3. Contours of the skin friction coefficient magnitude 

3.2. Pressure distribution on the spheroid 

In the reduced Navier-Stokes equations the pressure is one of the dependent variables, in 
contrast to the boundary layer equations where the pressure is imposed from the outer potential 
solution. Therefore it is of interest to study the differences between the potential pressure and the 
computed pressure within the domain of solution. Unfortunately, no experimental data are 
available for comparison with the numerical results of the present case. 

Figure 5 compares the computed (solid lines) and potential (dashed lines) isobars on the surface 
of the spheroid. A favourable longitudinal pressure gradient exists near the windward symmetry 
plane, while the pressure gradient at  the leeward symmetry plane is adverse. In the circumferential 
direction the pressure decreases from the windward symmetry plane, reaches a minimal value and 
then increases towards the leeward symmetry plane. The minimal pressure lines of the computed 
and potential solutions are shown in Figure 5 as well. Near the upstream and windward 
boundaries no significant deviations can be detected. The discrepancy between the computed and 
potential pressure in the vicinity of the minimal pressure line and near the downstream boundary 
is substantial, indicating a strong viscous-inviscid interaction in these regions. This interaction 
increases the pressure at 90" > O >  30" in comparison with the potential pressure, thus contribut- 
ing to the lift. The computed pressure field also reveals a property that does not appear in the 
potential solution. Near the downstream boundary at Ox 1 10" a second local minimum of the 
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Figure 4. Skin friction lines (a) on the unwrapped spheroid and (b) on the spheroid 

pressure can be observed. It will be shown in Section4.3 that this minimum is related to the 
presence of a longitudinal vortex on top of this region. 

3.3. The displacement velocity 

A major effect of high-Reynolds-number boundary layer flows on the external inviscid flow is 
the displacement of the particle lines. In many two-dimensional interactive boundary layer 
computations the viscous effect is accounted for in the inviscid solution by replacing the zero- 
normal-velocity condition on a solid wall with a normal velocity specified from the viscous region 
calculation. In the present work we define for general three-dimensional cases a displacement 
velocity V,  by 

where Vq,pot is the potential value of the q-component of velocity and the subscript 'outer' stands 
for the value at the outer boundary. It should be noted that in the present simulation the 
component V, at the outer boundary is not known a priori but is computed during the solution 
process. 

v, = ( v, - v,, potloutcr 3 (8) 
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L 

Figure 5. Contours of the computed and potential pressures on the spheroid 

Figure 6 shows the displacement velocity contours. In large parts of the region the displace- 
ment velocity is positive but small in magnitude, as is usually found in thin attached boundary 
layer flows. Significant positive displacement velocity can be found near the downstream 
boundary for 60" < 0 < 90°, presumably because of the thickening of the boundary layer near the 
global separation region. Significant negative displacement velocity is found on the leeward side. 
The region of negative displacement velocity extends into the windward side towards the 
downstream boundary, with an increase in its magnitude. The zero-displacement-velocity line, 
also shown in Figure 6, is slightly oblique, running windward for 2 > 0. 

4. THE THREE-DIMENSIONAL FLOW FIELD 

Surface properties of flows over slender bodies are easy to relate to experiments. However, they 
can produce only a limited physical insight into the flow field and sometimes might even be 
misleading. It is essential to study the three-dimensional flow and to investigate its properties. In 



FLOW OVER A 6: 1 PROLATE SPHEROID 159 

I80 

110 '" 160 

I50 

I40 

I30 

I20 

I10 

100 

go 

80 

70 

6Q 

5c 

40 

50 

20 

I C  

C 
-I 

-__ 
84 - 0.144 O.'O 4 0.'3 6 0.76 

Z 
Figure 6. Contours of the displacement velocity on the spheroid 

particular, the location and structure of the vortices can be studied only by considering the three- 
dimensional flow field. 

4.1. Pressure field 

Figure 7 presents a carpet plot of the computed (upper part) and potential (lower part) pressure 
fields at several cross-flow planes along the spheroid. The values p=O.17 and 0.22 correspond to 
the surface of the spheroid and to the outer boundary respectively. On the upstream cross-flow 
plane (2 = - 0.44) no significant difference can be found between the computed and potential 
pressure. At the next cross-flow plane (2 =0-08) some differences can be detected in a small region 
near the surface of the spheroid leeward of the minimum pressure (the computed pressure is larger 
than the potential pressure). At the next cross-flow planes the deviation of the computed pressure 
from the potential pressure not only increases but also spreads over a larger domain in the 
circumferential as well as the normal direction. In the downstream cross-flow planes a local 
second minimum in the computed pressure can be observed leeward of the minimum pressure. 
The local minimum extends into the normal direction but vanishes at the outer boundary where 
the potential pressure distribution is imposed. In the regions upstream of the global separation 
the outer boundary is placed far enough from the surface of the spheroid judging from the smooth 
blending of the computed pressure with the imposed potential pressure. 
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4.2. Velocity jield 

The next figures describe the velocity field. Figure 8 shows the projection of the velocity vector 
on several longitudinal planes (TETA is the value of 0). For the sake of clarity, only every second 
axial station is shown and the scale normal to the surface is five times larger than the longitudinal 
scale. Figure 9 shows the mainstream velocity component (VJ profile along the normal direction q 
at several longitudinal planes and axial locations. The normalized co-ordinate q is defined by 

where Ri, is the local radius of the spheroid and R is the radial distance from the axis of the 
spheroid given by 

(9b) 
The boundary layer of K is thin near the windward symmetry plane and at the front half of the 
body. Moreover, is self-similar with respect to q at the windward symmetry plane and to some 
extent also at the leeward symmetry plane. A thick boundary layer of the velocity component K is 
found at Z > O  and 120°>0>600. This region coincides with the region where significant 
displacement velocity has been found (Figure6). In the upstream part of that region the 
mainstream component of velocity is apparently close to being reversed since 8 K:/dq-+O. The 
longitudinal pressure gradient is adverse (see Figure 5), yet the velocity component does not 
reverse its sign near the wall. On the contrary, the flow accelerates near the surface and a local 
maximum is formed. This local maximum disappears downstream and a thin boundary layer of 
reappears in most of the downstream region of the computational domain. Because the phe- 
nomena are highly three-dimensional, two-dimensional reasoning fails completely in predicting 
the flow field in this region. 

Figure 10 shows the projection of the velocity vector on several cross-flow planes. Here too the 
scale of the normal co-ordinate is enlarged five times and only every second circumferential point 
is plotted. ROIN is the value of Ri ,  at the cross-section and R is the radial distance. Figure 11 
describes the distribution of the circumferential velocity V ,  with respect to q. In the windward part 
of the spheroid exhibits a thin boundary layer behaviour, except far downstream where a 
circumferentially reversed flow exists. On the leeward side negative can be found near the 
surface at all the cross-sections shown. 

R = a  sinh p sin 5. 

4.3. The vortical flow 

Several interesting phenomena have been observed in the leeward and downstream parts of the 
spheroid, i.e. circumferentially reversed flow, convergence of the skin friction lines, significant 
deviation of the computed pressure from the potential pressure, negative displacement velocity 
and unusual velocity profiles. Apparently, a free vortex flow, which we shall refer to as a 
longitudinal vortex, might have been formed there. In compressible flows the longitudinal vortices 
can be identified from the density contours (or any another related quantity). Obviously, this 
procedure cannot be used in the present incompressible case. 

In fact, even the terms ‘free vortex’ or ‘longitudinal vortex’ are ambiguous and a well accepted 
quantitative definition does not yet exist. Usually, the term ‘vortex’ is related to a global property 
of many particles rather than to a local property. A possible qualitative definition is: ‘a vortex is a 
mass of fluid that rotates around a common axis’. In longitudinal vortex regions the particle 
traces spiral around a common axis which is also a particle line. Hence this vortex flow may be 
visualized by analysing the particle traces or a sequence of two-dimensional vector plots along the 
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Figure 8. The velocity field in several longitudinal sections 

body. In the present study we rely on the cross-flow velocity vector plots of Figure 10 to locate the 
vortical flow regions approximately. 

The first sign of a possible vortical region can be observed at the cross-flow plane Z=O.O8 at 
0% 132" owing to the 'rotating' nature of the cross-flow. At Z=O33 and at Ozz 140  the vortical 
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Figure 10. The velocity field in several cross-flow sections 
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Figure 11. Distribution of the s-component of velocity 

flow region is more prominent. The maximal magnitude of the circumferentially reversed flow is 
of the same order as the potential component. At the last two cross-flow planes shown, Z=O57 
and 0.76, the vortical nature of the flow is even clearer. Regions of circumferentially reversed flow 
exist over major parts of the spheroid and the circumferential boundary layer is thick. Clearly, the 
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region of vortical flow spreads out in both the normal and circumferential directions. Figure 12 
shows an expanded view of the cross-flow field at Z = 0 5 7 .  In this figure every circumferential 
point is plotted but some points near the outer boundary are omitted. The typical pattern of 
vortex flows can be observed, with the centre at Ox 11 5” and z 6. 

Since the axis of a vortex is also a particle line, the velocity component normal to it is zero. This 
property can be used to locate the axis of the longitudinal vortex by joining the points of zero 
cross-flow velocity. Obviously, this definition is exact only if the vortex centreline is perpendicular 
to the cross-flow plane. Nevertheless, in the case of slender bodies at intermediate angles of attack 
the deviation is usually small and this approximation yields acceptable results. Figure 13 shows 
two views of the approximate vortex centreline obtained by this method. The upper figure is an 
q-Z view while the lower figure is a 8-2 view. The vortex centre moves towards the windward 
side and away from the surface, yet the angle between the axial direction and the vortex centre is 
indeed small. The rate of departure of the vortex centreline from the body increases substantially, 
indicating a possible detachment of the vortex. 

The presence of the longitudinal vortex has several effects on the properties of the flow field, 
both near the surface and away from it. The t-component of velocity shows a unique shape in the 
regions where the longitudinal vortex is embedded within the boundary layer (see Figures 8 and 
9). In particular, an unexpected local maximum can be found near the surface. This shape of the t -  

(WORHALIAXIAL COORDIYAILLSCALE- 5.0 

2 =  0 . 5 7  ___, 
v -  0.2 

/ 

Figure 12. Enlargement of the velocity field at the cross-Row section 2=0.57 
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Figure 14. The formation of a local maximum in q 

component of velocity is mainly a result of the projection of the three-dimensional flow field into 
a two-dimensional section. Owing to the inclination of the longitudinal vortex to the t-direction, 
the vortical flow has a component in the longitudinal direction as well (see Figure 14). The 
combination of a regular boundary layer velocity profile and the vortical flow velocity profile 
yields the local maximum of the t-component of velocity. It should be noted that the contribution 
of the vortical flow to the t-component of flow is significant only near the body, where the velocity 
due to the boundary layer is small. If the longitudinal vortex is far from the body, as is the case in 
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the downstream parts of the solution domain, the contribution of the vortical motion to is 
negligible and 

The negative displacement velocity near the leeward symmetry plane is another outcome of the 
longitudinal vortex, since it induces a negative normal velocity leeward of the vortex centreline. 
The local minimum of the pressure field (Figures 5 and 7) is yet another consequence of the vortex 
flow. However, the magnitude of the displacement velocity is small because of the weak strength 
of the longitudinal vortex. 

exhibits the regular monotonic velocity profile. 

4.4. Vorticity jield 

Many features of vortical flows are strongly related to the vorticity o. It has been found in the 
present simulations that the q-component of vorticity is negligible and therefore its contribution 
will not be studied. Figure 15 shows the contours of the s- and t-components of vorticity at  
selected cross-flow planes. The horizontal axis is the circumferential co-ordinate 8 and the vertical 
axis is the normal co-ordinate p. The values p=O.17 and 0.22 correspond to the surface of the 
spheroid and to the outer boundary respectively. Since the vorticity gradient near the surface of 
the spheroid is very large, contour lines are drawn only for ( w I  < 100 (non-dimensional). 

The vorticity is generated at the solid wall and penetrates from the surface into the outer flow 
field by convection and diffusion. In most of the windward side the t-component of vorticity is 
negative while on the leeward side it is positive in the vicinity of the body. The location of the zero 
t-component of vorticity on the surface, o,=O, coincides with the location of the zero circum- 
ferential skin friction. Over large regions of the body the vorticity is confined to a thin 
boundary layer. The flow outside this region is essentially inviscid except in a domain where 
vorticity originating from the windward side penetrates into the outer flow. This region is small 
upstream but spreads out rapidly at the rear half of the spheroid. At the downstream boundary 
(Z=O.76) substantial vorticity exists even near the outer boundary, but it is confined to a narrow 
region in the circumferential direction, 60" < 8< 120". It should be noted that the qualitative 
distribution of the t-component of vorticity in the cross-flow planes is similar to the vorticity 
distribution over a two-dimensional cylinder. The distribution of the s-component is qualitatively 
similar to the t-component except that no reversal in sign can be found. 

The region of significant vorticity away from the body coincides with the region where a 
longitudinal vortex has been identified. The location of the vortex centre is shown in Figure 15 by 
the ' x ' symbols. No correlation could be found between the local absolute maximum of vorticity 
and the vortex centre except in the upstream parts of the vortex. The same findings are true in 
two-dimensional flows, i.e. the centres of the vortices behind a circular cylinder do not coincide 
with the extremum points of the vorticity field. 

5. DISCUSSION 

An indisputable definition of the three-dimensional separation line does not exist and probably 
no unique criterion can be found. Three-dimensional separation is usually a gradual process and 
therefore detection of the exact location of flow separation or detachment from a surface is 
difficult. A simple analysis by Lighthil14 shows that the limiting streamlines leave a body rapidly 
near either a singular point (lCf(-+O) or near a convergence line of the skin friction lines. Indeed, 
most researchers agree that in a separated flow region the limiting streamlines leave the surface 
'rapidly'. Although this definition is conceptually clear, it is not a quantitative criterion. However, 
this reasoning is confined to the near-surface flow field, whereas three-dimensional separation is 
usually a global phenomenon that penetrates far out. As has already been mentioned, topological 
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analysis of the skin friction lines cannot uniquely determine whether the flow has been separated. 
The identification of separated flow regions should rely on the analysis of the entire three- 
dimensional flow. 

A major feature of interest in the present work is the longitudinal vortices and their separation 
from the surface of the spheroid. In what follows, the term separation refers to the detachment of 
the longitudinal vortices only. The topic of flow separation is much broader (see e.g. References 2 
and 6). However, because the present computational domain includes only regions with longitud- 
inal vortical flows, no attempt will be made to discuss the full variety of flow separation types. 

0.2 2 

P 

0.1 7 

t COMPONENT 
21-0.44 

0.2 2 

P 

0.1 7 
0.2 2 

P 

0.1 7 

S COMPONXNT 
2--0.44 

z-0.08 

0' e 180' 0' e 180' 

Figure 15. Contours of the t- and s-components of vorticity in several cross-flow sections 
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We suggest a somewhat narrow definition of flow separation: a vortical flow is separated if the 
distance of the vortex centreline from the body is 'large', i.e. when the centreline is outside the 
boundary layer region. Figure 13 reveals that the departure rate of the vortex centreline from the 
spheroid increases significantly at 2 z 0.5, where the vortex centre is at q !z 5. (Near the down- 
stream direction the rate decreases, presumably because of the effect of the downstream com- 
putational boundary.) This region coincides approximately with the disappearance of the local 
maximum of near the spheroid. As may be recalled, this local maximum has been attributed to 
the presence of a vortex flow inside the boundary layer region. On the basis of these data it is 
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reasonable to assume that the longitudinal vortex separates near Z = 0.5. The vorticity distribu- 
tion (Figure 15) confirms this observation, since the vorticity penetrates substantially outside the 
boundary layer in about that region. 

Another possibility of defining the detachment of longitudinal vortices may be based on the 
value of the negative displacement velocity. When it exceeds a certain amount, the vortical flow 
may be considered detached. How that amount can be determined is not clear yet and additional 
study is required to evaluate this suggestion. Chapman6 suggests a similar definition to locate the 
separation point at each cross-flow plane: 'the point where the local displacement thickness is a 
given amount larger than the average displacement thickness in the circumferential direction'. 

Having established the existence of a detached vortex flow, we return to the examination of the 
flow properties near the surface. Figure 16 summarizes several characteristic lines on the surface 
of the spheroid that have been defined in the present paper. The lines shown are the zero- 
circumferential-friction line (ZCFL), the minimal skin friction line, the skin friction convergence 
line, the zero-displacement-velocity line, the minimal pressure line and the projection of the 
vortex centreline on the body. 

It is worth noting that all the lines have similar shape although no two of them coincide. The 
zero-circumferential-skin-friction line lies leeward (about 15") of the minimal pressure line and 
quite close to the skin friction convergence line, which in turn is about 4" leeward of the ZCFL. 
This is yet more computational evidence that the ZCFL does not generally coincide with the skin 
friction convergence line (see e.g. Reference 5).  Reversed flow in the circumferential direction can 
be found near the spheroid as far upstream as Z=-O.65, whereas a clear skin friction conver- 
gence line appears only at Z z 0. The skin friction convergence line should be the separation line 
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Figure 16. Summary of several characteristic lines on the spheroid 
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from which a separation surface emanates and rolls up into the vortical flow. However, although 
a clear convergence line is already formed at Z z 0, the three-dimensional field analysis has shown 
that the vortical flow is still embedded inside the boundary layer as far as Z=0.5. This is a 
computational manifestation of the generally accepted observation that convergence of the skin 
friction lines is not a sufficient condition for the detachment of the longitudinal vortices.* Note 
that the separation line is topologically indistinguishable from other skin friction lines since no 
singular points have been detected on it. 

The shape of the lines reveals the strong three-dimensional effects near the separation line. The 
minimal skin friction line is at quite a distance leeward of the zero-circumferential-friction line 
and leeward of the separation line. Clearly, it cannot be used as an approximation of the 
separation line. The zero-displacement-velocity line and the projection of the vortex centreline are 
leeward of the separation line and close to one another, since the sign of the displacement velocity 
is closely related to the direction of the cross-flow velocity. The present study suggests that the 
zero-displacement-velocity line may give a better estimate of the vortex centreline projection on 
the body. Further study is required to establish the relationship between them. 

In many two-dimensional viscous-inviscid interaction models the interaction algorithm is 
driven by an injection velocity computed from the viscous solution. In these cases the flow 
separation is described by a positive injection velocity. The three-dimensional extension of this 
algorithm can be based on the 'displacement velocity' concept that has been used in the present 
work. However, Figure 6 reveals that in the three-dimensional case vortical flow separation is not 
necessarily related to a positive injection velocity but to a combination of both positive and 
negative displacement velocities. Hence certain separation control devices or longitudinal vortex 
generators should use a combination of suction and injection. Devices based on the suction of the 
boundary layer may not work or may cause unexpected results in three-dimensional cases. 

6. CONCLUDING REMARKS 

The purpose of the paper has been to simulate numerically the longitudinal vortical flow field 
regions over a slender prolate spheroid at intermediate incidence using the reduced 
Navier-Stokes equations. The present work moves one step beyond the boundary layer approx- 
imation by relaxing the requirement of an imposed pressure field. The physical parameters were 
chosen so that no pronounced effects of the rear-end global separation are expected in the 
upstream vortical flow. Thus the solution of a domain that does not include the rear end of the 
spheroid is justified. 

The main features of vortical laminar flow fields over blunt bodies at intermediate incidence 
have been successfully simulated. The quality of the results permitted a study of the laminar flow 
over a 6 :  1 spheroid at  lo" incidence and shed some light on the structure of the highly three- 
dimensional flow field in the longitudinal vortex region. The vortical flow is relatively weak and 
has less pronounced effects than its counterpart flow over delta wings with sharp leading edges. It 
emanates from an oblique separation line to which the skin friction lines converge from both 
sides, but a clear vortex flow is observed only at the downstream part of the separation line. The 
origin of the separation line cannot be tracked and no primary singular points have been found 
on the upstream part of that line. 

Comparison of the results with experiments suggests that an accurate simulation of the vortex 
flow requires the solution of the mixed laminar, turbulent and transitional flows. However, the 
analysis tools that have been developed and the qualitative flow properties deduced in the present 
study are believed to apply to the turbulent regimes as well. 
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